

Abstract—This paper presents the concept of an object-based

programming language where tests (if... then... else) and control
structures (while, repeat, for...) disappear and are replaced by
conditions on data.

According to the object paradigm, by using this concept, data are
still embedded inside objects, as variable-value couples, but object
methods are expressed in the form of logical propositions
("conditions on data" or COD).

For instance:
variable1 = value1 AND variable2 > value2 => variable3 = value3

Implementing this approach, a central inference engine turns and
examines objects one after another, collecting all CODs of each
object. CODs are considered as rules in a rule-based system: the left
part of each proposition (left side of the "=>" sign) is the premise and
the right part is the conclusion. So, premises are evaluated and
conclusions are fired. Conclusions modify the variable-value couples
of the object and the engine goes to examine the next object.

The paper develops the principles of writing CODs instead of
complex algorithms. Through samples, the paper also presents
several hints for implementing a simple mechanism able to process
this "COD language".
 The proposed approach can be used within the context of
simulation, process control, industrial systems validation, etc. By
writing simple and rigorous conditions on data, instead of using
classical and long-to-learn languages, engineers and specialists can
easily simulate and validate the functioning of complex systems.

Keywords—conditions on data, logical proposition, programming
without code, object programming, simulation, system validation.

I. THE USEFULNESS OF A SIMPLE PROGRAMMING LANGUAGE

Within the context of complex system simulation, process control
verification/improvement or specification validation, adapted tools
are needed to help engineers to model the process of the future
system or the functioning of the present system to be improved. By
using these tools, engineers have to express and combine the
functioning of subsystems, procedures, mechanisms, etc. by
describing and modeling diverse industrial objects or concepts, then
putting and connecting them together in order to represent the final
functioning of the system.

In order to achieve this purpose, the use of modeling tools [1] is
possible, but they have to be manipulated by experts. A semantic

Philippe Larvet was research engineer at Alcatel-Lucent Bell Labs,

Villarceaux (France). Author of numerous publications and patents, he works
now as independent consultant in Bergerac (France). e-mail: phlarvet@
gmail.com. LinkedIn https://www.linkedin.com/in/philippe-larvet-9ba391/

description of all subsystems in terms of semantic components [2] is
another way, but this approach is difficult to handle for engineers and
specialists who are not necessarily IT professionals. A description of
the system is also possible through the implementation of a collection
of interacting objects, within the scope of OO programming [3], but
this powerful way is once more reserved to computer engineers.

This paper presents another approach, combining the power of
object paradigm with the simplicity of manipulating only data and
conditions on these data, without the difficulty of writing complex
code or algorithms. So, this approach – that could be considered a
programming-without-code way – can be used by non-IT
professionals.

II. WHAT IS A PROGRAM?

Within the scope of modern development [4], a program is a set of
interacting objects [5]. Each object embeds

- data, under the form of variable-value couples, e.g.
variable1 = value1
- and methods, which can be seen as services rendered by the

objects.

Fig. 1 A Program is a Set of interacting Objects

Analyzing the system, modeling the concepts and splitting them
into interacting objects are tasks accessible to non-IT professionals
[6]. But the real difficulty, the complexity of the dynamic functioning
of the system, is hidden inside objects, within their methods. There,
have to be written algorithms and software mechanisms, expressed in
“code” (Java, C++, C#, PHP, etc.). And there, computer specialists
are needed.

So, a means of achieving a complete and executable model of the
system could be very interesting, mainly if only system specialists
could express the model by themselves, without the help of IT-

Programming Without Code: An Approach And
Environment For Conditions-On-Data

Programming

Philippe Larvet

OBJECT1

Data

Methods

OBJECT2

Data

Methods

OBJECT4

Data

Methods

OBJECT3

Data

Methods

professionals. It is well known that computer engineers generally turn
the specifications into their own “sauce”, and most of the time the
system finally implemented does not meet the initial requirements.
Building a system within the scope of a precise activity field must be
a matter for specialists in this field, not for IT specialists.

Consequently, a way allowing non computer engineers to describe
the complexity of object methods and algorithms could be very
relevant.

Let us see with a little more detail the contents of these methods or
algorithms.

Written in a given programming language, the code of an
algorithm is made of process statements (instructions). Statements
can be partitioned into four well-defined categories [7]:

- Accessors
- Calculations
- Method calls
- Tests
These categories are characterized in terms of the purpose of the

instruction and the use it makes of object data.

Accessors are statements whose only purpose is to access data in a
single object. Accessors can read or write (= update) data of a single
object.

Examples:
1) cont = TANK.content

means the data (= variable) content of the object TANK is read
and set to the variable cont.

2) TIMER.timeout = 50

means the value 50 is allocated to the variable timeout of the
object TIMER ; in other terms, the value 50 is written to the internal
data timeout of the object TIMER.

Calculations (or transformations) are statements whose purpose is
one of computation or transformation of data.

Examples:
1) i = i + 1 (or i++)

This very classical “dynamic equation” means the value of i is
incremented and the new result is written to i .

2) delta = (b*b) – (4*a*c)

Method calls are statements that call methods onto other objects.
Example:
tax = COMMON.compute_tax(param)

means the method compute_tax of the object COMMON is
called, and the result of the computation is set to the variable tax .

Tests are statements that test conditions on some data and control
the process flow according to the test results. There are two kinds of
Tests: simple (if… then… else) and repetitive (while, repeat… until,
for, do… loop).

Examples:
1) if (condition) then action_1
 else action_2

2) for (j=0; j<limit; j++)

 action_3
 end for

3) while (condition)

 action_4
 end while

where the different action_i are sets of other statements.

According to these definitions, a program can be seen as a set of

objects, each object embedding a set of complex statements.

III. HOW TO REDUCE THE PROGRAMMING COMPLEXITY?

We assume that writing Method calls and Tests represents the true
complexity of programming activity. With these two categories of
statements, we are at the heart of the difficulty of writing programs.

In order to reduce this difficulty, it is necessary to think about the
main characteristics and purposes of programs, at the highest level:

- Programs transform data into other data (also called “results”).
- Programs are dynamic (in the common language, one says “the

program turns”).
- Programs have to keep data and intermediate results during all

the time of their execution, and have to render final results at the end.
If programs can be considered as sets of objects, these assertions

become (we will call them our “main assertions”):
- MA1: Objects keep data (and results).
- MA2: Objects transform data into results.
- MA3: Objects are dynamic.
Synthetically speaking, the main purpose of a program is to

process and transform data. Looking at the detail of statement syntax,
we observe that statements, except tests, are always written under the
form of equations that express relationships between data. So, a good
question could be: why not to express Tests as relationships - or
conditions on data?

In mathematics, we write
A = B and B = C => A = C
that is semantically equivalent to
if A = B and B = C then A = C
So, the conditions on data A, B and C have the semantics of a Test

in terms of process statement.
Consequently, the following Test
if (condition) then action_1
else action_2
end if
could be expressed as
condition => action_1
non(condition) => action_2

And the following one:
for (j=0; j<limit; j++)

 action_3
 end for

could be expressed as
j = 0 => action_3 AND j++
j < limit => action_3 AND j++
which is equivalent to
j = 0 OR j < limit => action_3 AND j++

In the same way, this Test
while (a = b)

 action_4
 end while

is equivalent to the following COD:
a = b => action_4

In short, we assume that a program can be written in terms of
- data
- relationships on data (dynamic equations)
- conditions on data.

Then, a first level of reduction of the programming complexity is

reached by expressing all the code in terms of data and conditions on
data (COD): code becomes data and COD.

So, our main assertion MA1 becomes:
- MA1: Objects keep data and CODs.
CODs formulate Tests, but they have a disadvantage: they do not

express repetitions and loops, i.e. the dynamics of the processing.

IV. HOW TO SIMPLIFY THE PROBLEM OF DYNAMICS?

A simple possibility to solve this problem is to put the dynamics
outside the objects. For this, we can rely on the concept of expert
systems [8] or rule-based systems [9].

This concept is interesting here for two reasons:
- CODs can be seen as production rules;
- the inference engine mechanism is the solution to place the

dynamics outside the objects.

Fig. 2 Schema of an Expert System

In an expert system, the inference engine examines one after
another the rules in the Rule Database.

Rules have the general form:
if (premise1) AND (premise2)
then (conclusion1) AND (conclusion2)
If the premises of the rule (i.e. the conditions) are present in the

Fact Database, the rule is fired and the conclusions of the rule are
written in the Fact Database. The engine turns automatically until no
new conclusion is written.

TABLE I
ALGORITHM OF AN EXPERT SYSTEM INFERENCE ENGINE

repeat
 newConclusion = False

 for each Rule in RuleDataBase
 if fired(Rule) = False
 nbPremisesFoundInFactDB = 0
 for each Premise of the Rule
 for each Fact in FactDataBase
 if Premise = Fact
 then nbPremisesFoundInFactDB++
 end if
 end for
 end for

 if nbPremisesFoundInFactDB = nbPremisesOfTheRule
 then for each Conclusion of the Rule
 add Conclusion to FactDB
 end for
 fired(Rule) = True
 newConclusion = True
 endif

 end if
 end for
until newConclusion = False

A COD has the semantics of a production rule:
(condition1) AND (condition2)
=> (action1) AND (action2)
The left part of each COD (left side of the "=>" symbol) is the

premise(s) and the right part is the conclusion(s).
The main differences between the COD approach and the expert

system paradigm are presented in the following table.

TABLE II
DIFFERENCES BETWEEN COD APPROACH AND EXPERT SYSTEMS

COD approach Expert systems

CODs express conditions on
equalities (i.e. equations)

Rules express predicates or
“logical propositions”

CODs are distributed into all
objects because a COD belongs
to a given object

Rules are stored in a unique
Rule Database

Data are formal variable-value
couples

Facts can be informal

Data are distributed into all
objects because a given variable
belongs to a given object

Facts are stored in a unique Fact
Database

The purpose of COD processing
is to accomplish a given process
and to achieve a result, i.e. a
final state of the system,
meeting initial requirements

The purpose is to get some
conclusions, but no special
result is necessarily targeted

In the COD approach, we keep the principle of the Inference

engine. Due to this mechanism, our main assertions become:
- MA1: Objects keep data and CODs.
- MA2: The Inference engine transforms data according to CODs
- MA3: The Inference engine manages the process dynamics.
So, objects keep only the pertinent information from system

requirements, all the complexity of processing and dynamics being
deported to the Inference engine.

V. THE COD APPROACH

We consider this approach to be very relevant for non-IT
engineers, because it allows building a model of the system which is
closer to the system requirements: indeed, data and conditions-on-
data are necessarily described in the system specifications.

According to this approach, with an appropriate environment, the
description of data is sufficient to “run” the system.

The first step of the approach, according to classical Object-
Oriented Analysis methods [5], [7], is then to determine the “good”
set of objects that will embed data and CODs.

Fig. 3 Structure of a System in the COD Approach

FACT
DATA
BASE

RULE
DATA
BASE

Inference
Engine

OBJECT1

Data

CODs

OBJECT2

Data

CODs

OBJECT4

Data

CODs

OBJECT3

Data

CODs

INFERENCE
ENGINE

Once the objects are defined, their data and CODs are described
by using a simple “COD language”.

For example, here is the description of an object TANK (parts of
lines after “//” are comments):

TANK //Name of the object
contents = 100 //data
F_VALVE = open => contents++ //COD
E_VALVE = open => contents-- //another COD

Once the objects are described in “COD language”, the central

inference engine, containing an equation solver, turns and examines
objects one after another, collecting all CODs for each object. The
left part of each COD, i.e. the left side of the "=>" symbol, is
evaluated.

If the corresponding data, with the required values, can be found in
some object, the “conclusion” of the COD, i.e. the right side of the
“=>” symbol, is drawn: the conclusion modifies the variable-value
couple of the object.

When all the CODs of the current object have been evaluated, the
engine goes to examine the next object. The Table below shows the
main algorithms for the inference engine and its useful functions.

 TABLE III
ALGORITHMS OF THE COD APPROACH INFERENCE ENGINE

procedure moteur()
 new_conclusion = False
 For each Object
 For each COD of the Object
 premise = left_part(COD)
 conclusion = right_part(COD)
 if verified(premise)
 then draw(conclusion)
 new_conclusion = True
 end if
 end for
 end for
 if new_conclusion = True then moteur()

function verified(premise)
 verif = False
 For each Object
 For each equality of the Object
 //An equality = a couple variable-value
 //call of the equation solver
 if solved(equality, premise)
 then verif = True
 end if
 end for
 end for
 return verif

procedure draw(conclusion)
 For each Object
 For each equality of the Object
 if left_part(equality) =
 left_part(conclusion)
 then allocate(variable_of(equality),
 value_of(conclusion))
 end if
 end for
 end for

Implementing these algorithms, associated to a user-friendly
interface, allows having at disposal a powerful environment for test,
simulation or validation of diverse kinds of complex systems.

VI. DEVELOPING AN EXAMPLE

Developing a simple example will show the detailed approach and
will allow us to present the “COD language” in order to describe data
and CODs inside objects.

We use here the specification of a very simple industrial process
control system, presented by Paul T. Ward in one of his books [10].

Requirements of the Control System:
A thermal reaction consists in maintaining a given quantity of

liquid reagent at a temperature H for a duration T.
The filling of the reactor begins when the "Start Filling"

command is given by the operator.
When the level of reactant in the reactor reaches the value N,

stop the filling (i.e. close the filling valve) and switch on the heating
element.

Trigger the timer as soon as the temperature of the reactant in
the reactor reaches the H value.

The timer is triggered by a specific command which is associated
with the duration T of the reaction.

Maintain the temperature of the reagent at the constant value H
for the period of time T.

As soon as the duration T has elapsed, turn off the heating
element and evacuate the reaction product to an external storage
tank.

Safety requirement:
Reactor filling can not start if the reagent level in the filling tank

does not reach the minimum value M.
In this case, the system must detect it as soon as possible and

produce an alarm in response to the "Start Filling" command.

The first step of the COD process is to determine the objects and
their relationships. Links between ObjectA and ObjectB are essential
to reveal if ObjectA knows the data of ObjectB.

Here is the Structure of the Control System (the logical name of
each OBJECT is given in parentheses):

The System is made of a Reactor (REACTOR), two tanks (Filling
tank FTANK and storage tank STANK), a Heating element
(HEATER), valves (Filling valve of the Reactor FVALVE and
Emptying valve EVALVE), a timer (TIMER) and alarm (ALARM).

Fig. 4 Object model of the Control System

FTANK

FVALVE

is emptied by

CONTROL
surveys

REACTOR

fills

starts

ALARM

switches on

PARAMETERS

knows

HEATER

TIMER

knows

EVALVE

STANK

fills

VALVE

TANK

knows

is emptied by

is heated by

knowssets

In addition to these concrete objects, two abstract ones are
required: parameters (PARAMETERS), that keeps the values of the
reaction parameters (M, N, H and T), and a controller (CONTROL)
which surveys the minimum level in the FTANK and sends the “Start
Filling” command. Fig. 4 shows the complete UML [11] object
model of this simple Control System.

After defining objects and their relationships, the second step of
the COD approach is to allocate data to each object, according to the
specified requirements.

TABLE IV
OBJECTS AND DATA

OBJECT Data Values
ALARM status ON, OFF
CONTROL Start Filling
HEATER status

temperature
ON, OFF

PARAMETERS M, N, H, T
REACTOR contents

temperature

TANK contents
TIMER status

time
SET, ON, OFF

VALVE status open, close

The following step is to complete this Table with CODs.
Conditions on data for a given object are determined by its own data
and by its relationships with its neighbors. For example, FTANK is a
TANK (inheritance) and has a variable “contents”. FTANK knows
FVALVE, so, the COD concerning “contents” can be a condition
including the data of FVALVE, that we write like this in “COD
language”:

FTANK
 contents = 100
 FVALVE = open => contents--

Table V shows the complete data and CODs for all objects. Note
that “ALARM = ON” is a simplified notation for “ALARM.status =
ON” and “temp” is equivalent to “temperature”.

TABLE V
OBJECTS, DATA AND CODS

OBJECT Data CODs
ALARM status = OFF
CONTROL Start Filling FTANK.contents < M =>

ALARM = ON
FTANK.contents >= M =>
FVALVE = open

HEATER status
temperature

status = ON => temp++
status = OFF => temp--

PARAMETERS M, N, H, T
REACTOR contents

temperature
FVALVE = open => cont++
cont = N =>
FVALVE = close AND
HEATER = ON AND
TIMER = SET

TIMER = ON => temp =
HEATER.temp
temp < H => HEAT = ON
temp >= H => HEAT = OFF
TIMER = OFF AND
HEATER = OFF =>
EVALVE = open
EVALVE = open => cont--

TANK contents FVALVE = open =>
contents++
EVALVE = open =>
contents--

TIMER status
time

status = SET => time = T
AND status = ON
status = ON => time—
time = 0 => TIMER = OFF
AND HEATER = OFF

VALVE status

The last step is to write the COD language from this list (please
see Table VI below).

Please note that the objects are listed in the Table in alphabetical
order, and COD language will be processed by the Inference Engine
in the same order, for example. In fact, the order in which the Engine
examines the objects has no importance.

 However, the process control demands a rigorous order of
execution: first, the Reactor must be filled. Then, the heating system
must heat the reagent until the temperature H is reached. Then, the
timer is set. And the reaction must last the duration T. At least, the
product of the reaction has to be poured in the storage tank.

One of the big interests of the COD approach is that the order of
execution is rigorously kept by the CODs embedded in each object.
The Inference Engine manages not only the dynamics of the process,
but also the order of execution, because it cannot trigger a
“conclusion” on data if the conditions on these data are not filled.

TABLE VI
CONTROL SYSTEM COMPLETE COD NOTATION

//Control System COD Notation
//---------------------------
ALARM
 status = OFF
//----------
CONTROL
 FTANK.contents < M => ALARM = ON
 FTANK.contents > M => FVALVE = open
//---------------------------------
EVALVE
 status = close
//------------
FTANK
 contents = 100
 FVALVE = open => contents--
//-------------------------
FVALVE
 status = close
//------------
HEATER
 status = OFF
 temp = 18
 status = ON => temp++
 status = OFF => temp--
//--------------------
PARAMETERS
 M = 50
 N = 40
 H = 150
 T = 30
//----------
REACTOR
 contents = 0
 temp = 18
 FVALVE = open => contents++
 contents = N => FVALVE = close AND HEATER = ON AND
TIMER = SET
 TIMER = ON => temp = HEATER.temp
 temp < H => HEATER = ON
 temp >= H => HEATER = OFF

 TIMER = OFF AND HEATER = OFF => EVALVE = open
 EVALVE = open => contents--
//--
TIMER
 status = OFF
 time = 0
 status = SET => time = T AND status = ON
 status = ON => time—
 time = 0 => TIMER = OFF AND HEATER = OFF
//======================================

This “program without code” can be executed with the

environment we develop and propose for free download at:
www.programmingwithoutcode.org

As you can see, the complete notation for this example contains

less than 50 lines (including comments). This short content has to be
compared with the complete Java program solving the same example
we also develop as a comparison (the Java program can be
downloaded on the same web site). The Java program has been
generated from an object modeler and simulator, and contains 10
classes (Alarm, Control, Heater, mainClass, System, Reactor, Tank,
Parameters, Timer and Valve) for a total of 560 lines of code – the
class Reactor being of course the fattest!

We hope we have demonstrated through this example the power
and simplicity of the COD approach, where data and their conditions
are sufficient to model and make “run” complex systems.

VII. CONCLUSION

We have presented in this paper an approach, a language and an
environment that allow non-IT engineers to program the functioning
of a system without writing complex lines of code, by using only the
data required by the system and their conditions of use. We believe
this approach, powerful and simple, provides a complete tool for
system modeling and verification or simulation.

The sequel of this work, which is currently in progress and will be
presented in a next paper, consists in a complementary approach to
analyze directly the text of a system specification and to extract from
this text the description of objects with their data and CODs. By this
way, we hope to be able to generate the “COD language” in order to
feed directly the COD inference engine. We think this means will be
an interesting help for system modeling and simulation.

REFERENCES

[1] Modeling tools like Objecteering : http://www.objecteering.com (access
date: May 2017), UML Designer: http://www.umldesigner.org/ (access
date: May 2017), Rhapsody: http://www-03.ibm.com/
software/products/ (access date: May 2017), or Interactive Models:
http://www.sciencedirect.com/science/article/pii/S1877050915002513
(access date: May 2017)

[2] Ph. Larvet, Semantic Application Design, Bell Labs Technical Journal,
Volume 13, Issue 2, Summer 2008, Pages 75–91.

[3] John C. Mitchell, Concepts in programming languages, Cambridge
University Press, 2003, ISBN 0-521-78098-5, p.278.

[4] Pierce, Benjamin, Types and Programming Languages, MIT Press,
2002, ISBN 0-262-16209-1, section 18.1 "What is Object-Oriented
Programming?"

[5] Grady Booch, Object-Oriented Analysis and Design With Applications,
Addison-Wesley, ISBN 0-8053-5340-2, l5th Printing, December 1998.

[6] Ph. Larvet, Analyse des Systèmes, de l’Approche fonctionnelle à
l’Approche objet, InterEditions, ISBN 2-7296-0430-8, Paris, 1994.

[7] Sally Shlaer, Stephen J. Mellor, Object Lifecycles, Modeling the World
in States, Yourdon Press Computing Series, Prentice Hall, 1992, ISBN
0-13-629940-7 p.125, Forming and Assigning Processes.

[8] Ph. Larvet, Systèmes Experts en Turbo-Pascal, Eyrolles, Paris, 1987

[9] Jocelyn Ireson-Paine, What is a Rule-Based System?, Feb. 1996,
http://www.j-paine.org/students/lectures/lect3/node5.html (access date:
May 2017)

[10] Paul T. Ward, Stephen J. Mellor, Structured Development for Real-Time
Systems, Yourdon Press, Prentice Hall, 1986, ISBN 0-13-854787-4,
Vol.I, Introduction & Tools.

[11] UML, Unified Modeling Language, http://www.uml.org/ (access date:
May 2017)

