Programming Without

Code: An Approach And

Environment For Conditions-On-Data
Programming

Philippe Larve

description of all subsystems in terms of semasdimponents [2] is

Abstract—This paper presents the concept of an object-basé‘H'Other way, but this approach is difficult to hignfdr engineers and

programming language where tests (if... then..e)elnd control
structures (while, repeat, for..) disappear and egplaced by
conditions on data.

According to the object paradigm, by using thisazpt, data are
still embedded inside objects, as variable-valugptes, but object
methods are expressed in the form of logical pribpos
("conditions on data" or COD).

For instance:

variablel = valuel AND variable2 > value2 => val&b= value3

Implementing this approach, a central inferencerengurns and
examines objects one after another, collectingCflilDs of each
object. CODs are considered as rules in a ruleebaggtem: the left
part of each proposition (left side of the "=>"rgigs the premise and
the right part is the conclusion. So, premises evaluated and
conclusions are fired. Conclusions modify the Jagavalue couples
of the object and the engine goes to examine tkeaigect.

The paper develops the principles of writing CODstéad of
complex algorithms. Through samples, the paper gsesents
several hints for implementing a simple mechanisie & process
this "COD language".

The proposed approach can be used within the xorié
simulation, process control, industrial systemsidedion, etc. By
writing simple and rigorous conditions on data,téasl of using
classical and long-to-learn languages, engineetlsspecialists can
easily simulate and validate the functioning of ptem systems.

Keywords—conditions on data, logical proposition, programgnin
without code, object programming, simulation, sgstelidation.

|. THE USEFULNESS OF ASIMPLE PROGRAMMING LANGUAGE

Within the context of complex system simulatiompqass control
verification/improvement or specification validatioadapted tools
are needed to help engineers to model the proceskeofuture
system or the functioning of the present systerbhetamproved. By
using these tools, engineers have to express amwbice the
functioning of subsystems, procedures, mechanisets, by
describing and modeling diverse industrial objestsoncepts, then
putting and connecting them together in order fasent the final
functioning of the system.

In order to achieve this purpose, the use of modeiools [1] is
possible, but they have to be manipulated by expdttsemantic

Philippe Larvet was research engineer at Alcatelelni Bell Labs,

specialists who are not necessarily IT professgnaldescription of
the system is also possible through the implemiemtatf a collection
of interacting objects, within the scope of OO peszgming [3], but
this powerful way is once more reserved to compeigineers.

This paper presents another approach, combiningptiveer of
object paradigm with the simplicity of manipulatiogly data and
conditions on these data, without the difficulty of writingroplex
code or algorithms. So, this approach — that ctnéldconsidered a
programming-without-code way can be used by rion-l
professionals.

Il. WHAT IS A PROGRAM?

Within the scope of modern development [4], a pragis a set of
interactingobjects[5]. Each object embeds

- data, under the form of variable-value couples, e.g.

variablel = valuel

- and methods which can be seen as services rendered by the

objects.
OBJECT3
OBJECT2
/ Data
Data
Methods
OBJECT1 / Methods /
OBJECT4
Data
Methods \
Data
Methods

Fig. 1 A Program is a Set of interacting Objects

Analyzing the system, modeling the concepts anittisgl them
into interacting objects are tasks accessible tolfoprofessionals
[6]. But the real difficulty, the complexity of tteynamic functioning
of the system, is hidden inside objects, withinrtimeethods. There,
have to be written algorithms and software meclmasiexpressed in
“code” (Java, C++, C#, PHP, etc.). And there, comapspecialists
are needed.

So, a means of achieving a complete and executatdizl of the

Villarceaux (France). Author of numerous publicaicand patents, he works system could be very interesting, mainly if onlystgyn specialists

now as independent consultant in Bergerac (Franeehail: phlarvet@
gmail.com. LinkedIn https://www.linkedin.com/inftippe-larvet-9ba391/

could express the model by themselves, without itelp of IT-

professionals. It is well known that computer eegirs generally turn
the specifications into their own “sauce”, and mokthe time the
system finally implemented does not meet the inigguirements.
Building a system within the scope of a precisévigtfield must be

a matter for specialists in this field, not fordpecialists.

Consequently, a way allowing non computer engintedescribe
the complexity of object methods and algorithms ldobe very
relevant.

Let us see with a little more detail the conterftthese methods or
algorithms.

Written in a given programming language, the codean
algorithm is made of process statements (instros}ioStatements
can be partitioned into four well-defined categsfi€]:

- Accessors

- Calculations

- Method calls

- Tests

These categories are characterized in terms oftingose of the
instruction and the use it makes of object data.

Accessorsare statements whose only purpose is to accessrdat
single object. Accessors can read or write (= updadata of a single
object.

Examples:

1) cont = TANK.content

means the data (= variable)ntent
and set to the variabtent.

2) TIMER.timeout = 50

means the value 50 is allocated to the varigiobeout of the
objectTIMER ; in other terms, the value 50 is written to thieinal
datatimeout of the objecTIMER

of the objecfTANKis read

Calculations (or transformations) are statements whose purigose

one of computation or transformation of data.

Examples:

1)i=i+1(orit+)

This very classical “dynamic equation” means thtueaofi is
incremented and the new result is writtem to

2) delta = (b*b) — (4*a*c)

Method callsare statements that call methods onto other objects

Example:

tax = COMMON.compute_tax(param)

means the methodompute_tax of the object COMMONs
called, and the result of the computation is sé¢héovariabldax .

Testsare statements that test conditions on some datz@ntrol
the process flow according to the test resultsr@laee two kinds of
Tests: simple (if... then... else) and repetitive (@hilepeat... until,
for, do... loop).

Examples:

1) if (condition) then action_1

else action_2

2) for (j=0; j<limit; j++)
action_3
end for

3) while (condition)
action_4
end while

where the differeraiction_i are sets of other statements.

Ill. HOow TOREDUCE THEPROGRAMMING COMPLEXITY?

We assume that writing Method calls and Tests ssmis the true
complexity of programming activity. With these tveategories of
statements, we are at the heart of the difficultyigting programs.

In order to reduce this difficulty, it is necessamythink about the
main characteristics and purposes of program&gshighest level:

- Programs transform data into other data (aldedé&tesults”).

- Programs are dynamic (in the common language,sags “the
program turns”).

- Programs have to keep data and intermediatetseguting all
the time of their execution, and have to rendealfiesults at the end.

If programs can be considered as sets of objdutsetassertions
become (we will call them our “main assertions”):

- MA1: Objects keep data (and results).

- MA2: Objects transform data into results.

- MA3: Objects are dynamic.

Synthetically speaking, the main purpose of a m@wogris to
process and transform data. Looking at the detatatement syntax,
we observe that statements, except tests, are swdtyen under the
form of equations that express relationships betvesga. So, a good
question could be: why not to express Tests adioe&hips - or
conditions on data?

In mathematics, we write

A=BandB=C=>A=C

that is semantically equivalent to

ifA=BandB=CthenA=C

So, the conditions on data A, B and C have the stosaof a Test
in terms of process statement.

Consequently, the following Test

if (condition) then action_1

else action_2

end if

could be expressed as

condition =>action_1

non(condition) => action_2

And the following one:
for (j=0; j<limit; j++)
action_3
end for
could be expressed as
j =0 =>action_3 AND j++
j < limit =>action_3 AND j++
which is equivalent to
j=0ORj < limit =>action_3 AND j++

In the same way, this Test
while (a=b)
action_4
end while
is equivalent to the following COD:
a=b =>action_4

In short, we assume that a program can be writtéerms of
- data

- relationships on data (dynamic equations)

- conditions on data.

Then, a first level of reduction of the programmummplexity is
reached by expressing all the code in terms of aiatbconditions on

According to these definitions, a program can benses a set of data (COD)codebecomeslataand COD.

objects, each object embedding a set of complégratnts.

So, our main assertion MA1 becomes:

- MA1: Objects keep data and CODs.

CODs formulate Tests, but they have a disadvanthgg: do not
express repetitions and loops, i.e. the dynamitseoprocessing.

IV. How TOSIMPLIFY THE PROBLEM OFDYNAMICS?

A simple possibility to solve this problem is totghe dynamics
outside the objects. For this, we can rely on thecept of expert
systems [8] or rule-based systems [9].

This concept is interesting here for two reasons:

- CODs can be seen as production rules;

- the inference engine mechanism is the solutioplaxe the
dynamics outside the objects.

FACT
DATA
BASE

RULE
DATA
BASE

Inference
Engine

Fig. 2 Schema of an Expert System

In an expert system, the inference engine examores after
another the rules in the Rule Database.

Rules have the general form:

if (premisel) AND (premise2)

then (conclusionl) AND (conclusion2)

If the premises of the rule (i.e. the conditions} present in the
Fact Database, the rule is fired and the conclgsmithe rule are
written in the Fact Database. The engine turnsmaatically until no
new conclusion is written.

TABLE |
ALGORITHM OF AN EXPERT SYSTEM INFERENCEENGINE

repeat
newConclusion = False

for each Rule in RuleDataBase
if fired(Rule) = False
nbPremisesFoundinFactDB = 0
for each Premise of the Rule
for each Fact in FactDataBase
if Premise = Fact
then nbPremisesFoundinFactDB++
end if
end for
end for

if nbPremisesFoundinFactDB = nbPremisesOfTheRule
then for each Conclusion of the Rule
add Conclusion to FactDB
end for
fired(Rule) = True
newConclusion = True
endif

end if
end for
until newConclusion = False

A COD has the semantics of a production rule:

(condition1) AND (condition2)

=> (actionl) AND (action2)

The left part of each COD (left side of the "=>"ngyol) is the
premise(s) and the right part is the conclusion(s).

The main differences between the COD approach hedxpert
system paradigm are presented in the followingetabl

TABLE Il
DIFFERENCES BETWEENCOD APPROACH ANDEXPERT SYSTEMS

COD approach Expert systems

CODs express conditions on
equalities (i.e. equations) “logical propositions”

Rules express predicates or

CODs are distributed into all Rules are stored in a unique
objects because a COD belongsRule Database
to a given object

Data are formal variable-value | Facts can be informal

couples

Data are distributed into all Facts are stored in a unique Fact
objects because a given variableDatabase
belongs to a given object

The purpose of COD processingThe purpose is to get some
is to accomplish a given procegsconclusions, but no special
and to achieve aresult, i.e. a | result is necessarily targeted
final state of the system,
meeting initial requirements

In the COD approach, we keep the principle of thierknce
engine. Due to this mechanism, our main asserbieosme:

- MA1: Objects keep data and CODs.

- MA2: The Inference engine transforms data acegrddo CODs

- MA3: The Inference engine manages the procesardigs.

So, objects keep only the pertinent informationnfreystem
requirements, all the complexity of processing dydamics being
deported to the Inference engine.

V. THE COD APPROACH

We consider this approach to be very relevant fon-iT
engineers, because it allows building a model efsyistem which is
closer to the system requirements: indeed, datacanditions-on-
data are necessarily described in the system sgaiohs.

According to this approach, with an appropriateiemment,the
description of datais sufficient to “run” the system.

The first step of the approach, according to ctadsObject-
Oriented Analysis methods [5], [7], is then to deti@e the “good”
set of objects that will embed data and CODs.

OBJECT1 OBJECT2 OBJECT3 OBJECT4
Data Data Data Data
CODs CODs CODs CODs
INFERENCE
ENGINE

Fig. 3 Structure of a System in the COD Approach

Once the objects are defined, their data and COPslescribed
by using a simple “COD language”.

For example, here is the description of an objeeNK (parts of
lines after “//” are comments):

TANK //Name of the object
contents = 100 //data
F_VALVE = open => contents++ //COD
E_VALVE = open => contents-- //another COD

Once the objects are described in “COD languade®, dentral
inference engine, containing an equation solvenstand examines
objects one after another, collecting all CODs dach object. The
left part of each COD, i.e. the left side of the>"=symbol, is
evaluated.

If the corresponding data, with the required valeas be found in
some object, the “conclusion” of the COD, i.e. tight side of the
“=>" symbol, is drawn: the conclusion modifies thariable-value
couple of the object.

When all the CODs of the current object have beatuated, the
engine goes to examine the next object. The Tasll@bshows the
main algorithms for the inference engine and iefulfunctions.

TABLE Il
ALGORITHMS OF THE COD APPROACHINFERENCEENGINE

procedure moteur()
new_conclusion = False
For each Object
For each COD of the Object
premise = left_part(COD)
conclusion = right_part(COD)
if verified(premise)
then draw(conclusion)
new_conclusion = True
end if
end for
end for
if new_conclusion = True then moteur()

function verified(premise)

verif = False

For each Object
For each equality of the Object
/IAn equality = a couple variable-value
/[call of the equation solver

if solved(equality, premise)

then verif = True
end if
end for

end for

return verif

procedure draw(conclusion)
For each Object
For each equality of the Object
if left_part(equality) =
left_part(conclusion)
then allocate(variable_of(equality),
value_of(conclusion))
end if
end for
end for

Implementing these algorithms, associated to a -fuserdly
interface, allows having at disposal a powerfuliemment for test,
simulation or validation of diverse kinds of compkystems.

VL.

Developing a simple example will show the detadgpgroach and
will allow us to present the “COD language” in arde describe data
and CODs inside objects.

We use here the specification of a very simple stidal process
control system, presented by Paul T. Ward in orf@ébooks [10].

DEVELOPING AN EXAMPLE

Requirements of the Control System:

A thermal reaction consists in maintaining a given quantity of
liquid reagent at a temperature H for a duration T.

The filling of the reactor begins when the " Start Filling"
command is given by the operator.

When the level of reactant in the reactor reaches the value N,
stop thefilling (i.e. close thefilling valve) and switch on the heating
element.

Trigger the timer as soon as the temperature of the reactant in
thereactor reachesthe H value.

Thetimer istriggered by a specific command which is associated
with theduration T of the reaction.

Maintain the temperature of the reagent at the constant value H
for the period of time T.

As soon as the duration T has elapsed, turn off the heating
element and evacuate the reaction product to an external storage
tank.

Safety requirement:

Reactor filling can not start if the reagent level in thefilling tank
does not reach the minimum value M.

In this case, the system must detect it as soon as possible and
produce an alarm in responseto the" Start Filling" command.

The first step of the COD process is to determireedbjects and
their relationships. Links between ObjectA and ©tijeare essential
to reveal if ObjectA knows the data of ObjectB.

Here is the Structure of the Control System (thgicll name of
each OBJECT is given in parentheses):

The System is made of a Reactor (REACTOR), twogd#kling
tank FTANK and storage tank STANK), a Heating eletme
(HEATER), valves (Filling valve of the Reactor FVXE and
Emptying valve EVALVE), a timer (TIMER) and alarAl(ARM).

ALARM
A\
switcr‘ms on
ETANK <surveys— CONTROL
is emp\‘t/led bZ/StaftS Knows
FVALVE v
TANK PARAMETERS
|
f'\lyls /knows7 f N
REACTOR knows
VALVE

Tsets, knows
TIMER I

is emptied by \
is heated by r

EVALVE ™ HEATER

|
fills
\'
STANK

Fig. 4 Object model of the Control System

In addition to these concrete objects, two abstm@wes are
required: parameters (PARAMETERS), that keeps #iees of the
reaction parameters (M, N, H and T), and a corsrddCONTROL)
which surveys the minimum level in the FTANK andde the “Start
Filling” command. Fig. 4 shows the complete UML Jldbject
model of this simple Control System.

After defining objects and their relationships, gezond step of
the COD approach is to allocate data to each glgecbrding to the
specified requirements.

TABLE IV
OBJECTSAND DATA
OBJECT Data Values

ALARM status ON, OFF

CONTROL Start Filling

HEATER status ON, OFF
temperature

PARAMETERS M,N,H, T

REACTOR contents
temperature

TANK contents

TIMER status SET, ON, OFF
time

VALVE status open, close

The following step is to complete this Table withODs.
Conditions on data for a given object are deterthiog its own data
and by its relationships with its neighbors. Foarmple, FTANK is a
TANK (inheritance) and has a variable “contentsTARNK knows
FVALVE, so, the COD concerning “contents” can beandition
including the data of FVALVE, that we write likeishin “COD
language”:

FTANK

contents = 100
FVALVE = open => contents--

Table V shows the complete data and CODs for géaib. Note
that “ALARM = ON” is a simplified notation for “ALARM.status =
ON” and “temp” is equivalent to “temperature”.

TANK contents FVALVE = open =>
contents++
EVALVE = open =>

contents--

TIMER status = SET =>time =T
AND status = ON

status = ON => time—
time =0 => TIMER = OFF
AND HEATER = OFF

status
time

VALVE status

The last step is to write the COD language frors tfst (please
see Table VI below).

Please note that the objects are listed in theeTabhlphabetical
order, and COD language will be processed by tferdnce Engine
in the same order, for example. In fact, the oiderhich the Engine
examines the objects has no importance.

However, the process control demands a rigorowteroof
execution: first, the Reactor must be filled. Thérg heating system
must heat the reagent until the temperature Hashed. Then, the
timer is set. And the reaction must last the doraff. At least, the
product of the reaction has to be poured in theagttank.

One of the big interests of the COD approach i tifva order of
execution is rigorously kept by the CODs embedaedach object.
The Inference Engine manages not only the dynadafitise process,
but also the order of execution, because it cantnigiger a
“conclusion” on data if the conditions on theseadate not filled.

TABLE VI
CONTROL SYSTEM COMPLETECODNOTATION

/IControl System COD Notation

CONTROL

FTANK.contents <M => ALARM = ON

FTANK.contents > M => FVALVE = open
I/
EVALVE

status = close

TABLE V
OBJECTS DATA AND CODs FTANK
contents = 100
OBJECT Data CODs FVALVE = open => contents--
ALARM status = OFF U E—
CONTROL Start Filling | FTANK.contents < M => FVS*t\aLt\JSE: close
ALARM = ON ——
FTANK.contents >= M => HEATER
FVALVE = open status = OFF
HEATER status status = ON => temp++ temp = 18
temperature | status = OFF => temp-- status = ON => temp++
PARAMETERS M, N, H, T s = OFF =>temp-
REACTOR contents FVALVE = open => cont++ PARAMETERS
temperature | cont=N => M = 50
FVALVE = close AND N = 40
HEATER = ON AND H = 150
TIMER = SET T=30
J/—
TIMER = ON =>temp = REACTOR
HEATER.temp contents = 0
temp < H => HEAT = ON temp =18

temp >= H => HEAT = OFF
TIMER = OFF AND
HEATER = OFF =>
EVALVE = open

EVALVE = open => cont--

FVALVE = open => contents++

contents = N => FVALVE = close AND HEATER = ON AND
TIMER = SET

TIMER = ON => temp = HEATER.temp

temp < H =>HEATER = ON

temp >= H => HEATER = OFF

TIMER = OFF AND HEATER = OFF => EVALVE = open
EVALVE = open => contents--
I/
TIMER
status = OFF
time=0
status = SET =>time = T AND status = ON
status = ON => time—
time = 0 => TIMER = OFF AND HEATER = OFF

I/

This “program without code” can be executed withe th
environment we develop and propose for free dowthkda
www.programmingwithoutcode.org

As you can see, the complete notation for this gtamontains
less than 50 lines (including comments). This shorttent has to be
compared with the complete Java program solvingéme example
we also develop as a comparison (the Java program he
downloaded on the same web site). The Java prodrasnbeen
generated from an object modeler and simulator, @mains 10
classes (Alarm, Control, Heater, mainClass, Sysieactor, Tank,
Parameters, Timer and Valve) for a total of 56@dimf code — the
class Reactor being of course the fattest!

We hope we have demonstrated through this exarhplg@dower
and simplicity of the COD approach, where data it conditions
are sufficient to model and make “run” complex eyss.

VII. CONCLUSION

We have presented in this paper an approach, adaegand an
environment that allow non-IT engineers to progtae functioning
of a system without writing complex lines of cotbg,using only the
data required by the system and their conditionasaf. We believe
this approach, powerful and simple, provides a deteptool for
system modeling and verification or simulation.

The sequel of this work, which is currently in press and will be
presented in a next paper, consists in a complemeapproach to
analyze directly the text of a system specificationd to extract from
this text the description of objects with theiraland CODs. By this
way, we hope to be able to generate the “COD lagejum order to
feed directly the COD inference engine. We think theans will be
an interesting help for system modeling and sinmiat

REFERENCES
(1]

Modeling tools like Objecteering : http://www.objeering.com (access
date: May 2017), UML Designer: http://www.umldestgrorg/ (access
date: May 2017), Rhapsody: http://iwww-03.ibm.com/
software/products/ (access date: May 2017), orrdoteve Models:
http://www.sciencedirect.com/science/article/pis31050915002513
(access date: May 2017)

Ph. Larvet,Semantic Application DesigBell Labs Technical Journal,
Volume 13, Issue 2, Summer 2008, Pages 75-91.

John C. Mitchell,Concepts in programming languageSambridge
University Press, 2003, ISBN 0-521-78098-5, p.278.

Pierce, Benjamin,Types and Programming Languaged)T Press,
2002, ISBN 0-262-16209-1, section 18.1 "What is d@bPriented
Programming?"

Grady BoochObject-Oriented Analysis and Design With Applicasio
Addison-Wesley, ISBN 0-8053-5340-2, I5th Printigecember 1998.
Ph. Larvet, Analyse des Systémes, de |'’Approche fonctionnelle
I'Approche objet)nterEditions, ISBN 2-7296-0430-8, Paris, 1994.
Sally Shlaer, Stephen J. Mellddbject Lifecycles, Modeling the World
in States,Yourdon Press Computing Series, Prentice Hall, 199BN
0-13-629940-7 p.12%;0rming and Assigning Processes.

Ph. LarvetSystémes Experts en Turbo-PasEstolles, Paris, 1987

(2]
(3]
[4]

(5]
(6]
[7]

(8]

[9] Jocelyn Ireson-PaineWhat is a Rule-Based Systenfeb. 1996,
http://www.j-paine.org/students/lectures/lect3/riatdém| (access date:
May 2017)

[10] Paul T. Ward, Stephen J. Mell@tructured Development for Real-Time
Systems,Yourdon Press, Prentice Hall, 1986, ISBN 0-13-85428
Vol.l, Introduction & Tools.

[11] UML, Unified Modeling Languagehttp://www.uml.org/ (access date:
May 2017)

a

