
 

 

  
Abstract—This paper presents the concept of an object-based 

programming language where tests (if... then... else) and control 
structures (while, repeat, for...) disappear and are replaced by 
conditions on data. 

According to the object paradigm, by using this concept, data are 
still embedded inside objects, as variable-value couples, but object 
methods are expressed in the form of logical propositions 
("conditions on data" or COD). 

For instance:  
variable1 = value1 AND variable2 > value2 => variable3 = value3 
 

Implementing this approach, a central inference engine turns and 
examines objects one after another, collecting all CODs of each 
object. CODs are considered as rules in a rule-based system: the left 
part of each proposition (left side of the "=>" sign) is the premise and 
the right part is the conclusion. So, premises are evaluated and 
conclusions are fired. Conclusions modify the variable-value couples 
of the object and the engine goes to examine the next object. 

The paper develops the principles of writing CODs instead of 
complex algorithms. Through samples, the paper also presents 
several hints for implementing a simple mechanism able to process 
this "COD language". 
 The proposed approach can be used within the context of 
simulation, process control, industrial systems validation, etc. By 
writing simple and rigorous conditions on data, instead of using 
classical and long-to-learn languages, engineers and specialists can 
easily simulate and validate the functioning of complex systems. 
 

Keywords—conditions on data, logical proposition, programming 
without code, object programming, simulation, system validation. 
 

I. THE USEFULNESS OF A SIMPLE PROGRAMMING LANGUAGE 

Within the context of complex system simulation, process control 
verification/improvement or specification validation, adapted tools 
are needed to help engineers to model the process of the future 
system or the functioning of the present system to be improved. By 
using these tools, engineers have to express and combine the 
functioning of subsystems, procedures, mechanisms, etc. by 
describing and modeling diverse industrial objects or concepts, then 
putting and connecting them together in order to represent the final 
functioning of the system. 

In order to achieve this purpose, the use of modeling tools [1] is 
possible, but they have to be manipulated by experts. A semantic 
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description of all subsystems in terms of semantic components [2] is 
another way, but this approach is difficult to handle for engineers and 
specialists who are not necessarily IT professionals. A description of 
the system is also possible through the implementation of a collection 
of interacting objects, within the scope of OO programming [3], but 
this powerful way is once more reserved to computer engineers. 

This paper presents another approach, combining the power of 
object paradigm with the simplicity of manipulating only data and 
conditions on these data, without the difficulty of writing complex 
code or algorithms. So, this approach – that could be considered a 
programming-without-code way – can be used by non-IT 
professionals.    

II. WHAT IS A PROGRAM? 

Within the scope of modern development [4], a program is a set of 
interacting objects [5]. Each object embeds 

- data, under the form of variable-value couples, e.g. 
variable1 = value1 
- and methods, which can be seen as services rendered by the 

objects. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 A Program is a Set of interacting Objects 
 

Analyzing the system, modeling the concepts and splitting them 
into interacting objects are tasks accessible to non-IT professionals 
[6]. But the real difficulty, the complexity of the dynamic functioning 
of the system, is hidden inside objects, within their methods. There, 
have to be written algorithms and software mechanisms, expressed in 
“code” (Java, C++, C#, PHP, etc.). And there, computer specialists 
are needed.  

So, a means of achieving a complete and executable model of the 
system could be very interesting, mainly if only system specialists 
could express the model by themselves, without the help of IT-
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professionals. It is well known that computer engineers generally turn 
the specifications into their own “sauce”, and most of the time the 
system finally implemented does not meet the initial requirements. 
Building a system within the scope of a precise activity field must be 
a matter for specialists in this field, not for IT specialists. 

Consequently, a way allowing non computer engineers to describe 
the complexity of object methods and algorithms could be very 
relevant.  

Let us see with a little more detail the contents of these methods or 
algorithms. 

Written in a given programming language, the code of an 
algorithm is made of process statements (instructions). Statements 
can be partitioned into four well-defined categories [7]: 

- Accessors 
- Calculations 
- Method calls 
- Tests 
These categories are characterized in terms of the purpose of the 

instruction and the use it makes of object data. 
 

Accessors are statements whose only purpose is to access data in a 
single object. Accessors can read or write (= update) data of a single 
object. 

Examples: 
1) cont = TANK.content 

means the data (= variable) content  of the object TANK is read 
and set to the variable cont.  

2) TIMER.timeout = 50 

means the value 50 is allocated to the variable timeout  of the 
object TIMER ; in other terms, the value 50 is written to the internal 
data timeout  of the object TIMER. 
 

Calculations (or transformations) are statements whose purpose is 
one of computation or transformation of data. 

Examples: 
1) i = i + 1 (or i++) 

This very classical “dynamic equation” means the value of i  is 
incremented and the new result is written to i . 

2) delta = (b*b) – (4*a*c) 
 

Method calls are statements that call methods onto other objects. 
Example: 
tax = COMMON.compute_tax(param) 

means the method compute_tax  of the object COMMON is 
called, and the result of the computation is set to the variable tax . 
 

Tests are statements that test conditions on some data and control 
the process flow according to the test results. There are two kinds of 
Tests: simple (if… then… else) and repetitive (while, repeat… until, 
for, do… loop). 

Examples: 
1) if (condition) then action_1  
   else action_2 

 
2) for (j=0; j<limit; j++)  

   action_3 
   end for 

 
3) while (condition)  

      action_4 
    end while 

where the different action_i  are sets of other statements.  
 
According to these definitions, a program can be seen as a set of 

objects, each object embedding a set of complex statements. 

III.  HOW TO REDUCE THE PROGRAMMING COMPLEXITY? 

We assume that writing Method calls and Tests represents the true 
complexity of programming activity. With these two categories of 
statements, we are at the heart of the difficulty of writing programs. 

In order to reduce this difficulty, it is necessary to think about the 
main characteristics and purposes of programs, at the highest level: 

- Programs transform data into other data (also called “results”). 
- Programs are dynamic (in the common language, one says “the 

program turns”). 
- Programs have to keep data and intermediate results during all 

the time of their execution, and have to render final results at the end. 
If programs can be considered as sets of objects, these assertions 

become (we will call them our “main assertions”): 
- MA1: Objects keep data (and results). 
- MA2: Objects transform data into results. 
- MA3: Objects are dynamic. 
Synthetically speaking, the main purpose of a program is to 

process and transform data. Looking at the detail of statement syntax, 
we observe that statements, except tests, are always written under the 
form of equations that express relationships between data. So, a good 
question could be: why not to express Tests as relationships - or 
conditions on data? 

In mathematics, we write 
A = B and B = C => A = C  
that is semantically equivalent to 
if A = B and B = C then A = C  
So, the conditions on data A, B and C have the semantics of a Test 

in terms of process statement. 
Consequently, the following Test  
if (condition) then action_1 
else action_2 
end if 
could be expressed as 
condition =>  action_1 
non(condition) => action_2 
 
And the following one: 
for (j=0; j<limit; j++ )  

   action_3 
 end for 

could be expressed as 
j = 0 =>  action_3 AND j++ 
j < limit =>  action_3 AND j++ 
which is equivalent to 
j = 0 OR j < limit =>  action_3 AND j++  
 
In the same way, this Test 
while (a = b )  

   action_4 
 end while 

is equivalent to the following COD: 
a = b =>  action_4 

 
In short, we assume that a program can be written in terms of  
- data 
- relationships on data (dynamic equations) 
- conditions on data. 
 
Then, a first level of reduction of the programming complexity is 

reached by expressing all the code in terms of data and conditions on 
data (COD): code becomes data and COD.  



 

 

So, our main assertion MA1 becomes: 
- MA1: Objects keep data and CODs. 
CODs formulate Tests, but they have a disadvantage: they do not 

express repetitions and loops, i.e. the dynamics of the processing. 

IV.  HOW TO SIMPLIFY THE PROBLEM OF DYNAMICS? 

A simple possibility to solve this problem is to put the dynamics 
outside the objects. For this, we can rely on the concept of expert 
systems [8] or rule-based systems [9]. 

This concept is interesting here for two reasons:  
- CODs can be seen as production rules; 
- the inference engine mechanism is the solution to place the 

dynamics outside the objects. 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 2 Schema of an Expert System 
 

In an expert system, the inference engine examines one after 
another the rules in the Rule Database.  

Rules have the general form: 
if (premise1) AND (premise2) 
then (conclusion1) AND (conclusion2) 
If the premises of the rule (i.e. the conditions) are present in the 

Fact Database, the rule is fired and the conclusions of the rule are 
written in the Fact Database. The engine turns automatically until no 
new conclusion is written. 
 

TABLE I 
ALGORITHM OF AN EXPERT SYSTEM INFERENCE ENGINE 

 

repeat 
  newConclusion = False 
 
  for each Rule in RuleDataBase 
 if fired(Rule) = False  
  nbPremisesFoundInFactDB = 0 
     for each Premise of the Rule 
    for each Fact in FactDataBase 
    if Premise = Fact 
    then nbPremisesFoundInFactDB++ 
    end if 
    end for 
     end for 
   
  if nbPremisesFoundInFactDB = nbPremisesOfTheRule 
  then for each Conclusion of the Rule 
    add Conclusion to FactDB 
    end for 
    fired(Rule) = True 
    newConclusion = True 
  endif 
  
 end if 
  end for  
until newConclusion = False 

 

A COD has the semantics of a production rule: 
(condition1) AND (condition2) 
=> (action1) AND (action2) 
The left part of each COD (left side of the "=>" symbol) is the 

premise(s) and the right part is the conclusion(s). 
The main differences between the COD approach and the expert 

system paradigm are presented in the following table. 
 

TABLE II 
DIFFERENCES BETWEEN COD APPROACH AND EXPERT SYSTEMS 

 
COD approach Expert systems 

CODs express conditions on 
equalities (i.e. equations) 

Rules express predicates or 
“logical propositions” 

CODs are distributed into all 
objects because a COD belongs 
to a given object 

Rules are stored in a unique 
Rule Database 

Data are formal variable-value 
couples 

Facts can be informal 

Data are distributed into all 
objects because a given variable 
belongs to a given object 

Facts are stored in a unique Fact 
Database 

The purpose of COD processing 
is to accomplish a given process 
and to achieve a result, i.e. a 
final state of the system, 
meeting initial requirements 

The purpose is to get some 
conclusions, but no special 
result is necessarily targeted 

 
In the COD approach, we keep the principle of the Inference 

engine. Due to this mechanism, our main assertions become: 
- MA1: Objects keep data and CODs. 
- MA2: The Inference engine transforms data according to CODs 
- MA3: The Inference engine manages the process dynamics.  
So, objects keep only the pertinent information from system 

requirements, all the complexity of processing and dynamics being 
deported to the Inference engine. 

V.  THE COD APPROACH 

We consider this approach to be very relevant for non-IT 
engineers, because it allows building a model of the system which is 
closer to the system requirements: indeed, data and conditions-on-
data are necessarily described in the system specifications.  

According to this approach, with an appropriate environment, the 
description of data is sufficient to “run” the system.  

The first step of the approach, according to classical Object-
Oriented Analysis methods [5], [7], is then to determine the “good” 
set of objects that will embed data and CODs. 
 

 
 
 
 
 
 
 
 
 

 

 

Fig. 3 Structure of a System in the COD Approach 
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Once the objects are defined, their data and CODs are described 
by using a simple “COD language”. 

For example, here is the description of an object TANK (parts of 
lines after “//” are comments): 
 

TANK //Name of the object 
contents = 100               //data  
F_VALVE = open => contents++ //COD 
E_VALVE = open => contents-- //another COD 

  
Once the objects are described in “COD language”, the central 

inference engine, containing an equation solver, turns and examines 
objects one after another, collecting all CODs for each object. The 
left part of each COD, i.e. the left side of the "=>" symbol, is 
evaluated.  

If the corresponding data, with the required values, can be found in 
some object, the “conclusion” of the COD, i.e. the right side of the 
“=>” symbol, is drawn: the conclusion modifies the variable-value 
couple of the object.  

When all the CODs of the current object have been evaluated, the 
engine goes to examine the next object. The Table below shows the 
main algorithms for the inference engine and its useful functions. 
 

 TABLE  III 
ALGORITHMS OF THE COD APPROACH INFERENCE ENGINE 

 

procedure moteur() 
    new_conclusion = False 
        For each Object 
            For each COD of the Object 
                premise = left_part(COD)  
            conclusion = right_part(COD) 
                if verified(premise)  
                then draw(conclusion) 
                new_conclusion = True 
                end if 
            end for 
        end for 
    if new_conclusion = True then moteur() 
         
function verified(premise)    
    verif = False 
    For each Object 
    For each equality of the Object 
     //An equality = a couple variable-value 
      //call of the equation solver 
    if solved(equality, premise) 
      then verif = True 
      end if 
    end for 
    end for 
    return verif 
 
procedure draw(conclusion) 
    For each Object 
     For each equality of the Object 
        if left_part(equality) = 
           left_part(conclusion)  
        then allocate(variable_of(equality), 
             value_of(conclusion))         
        end if 
     end for 
    end for 

 

Implementing these algorithms, associated to a user-friendly 
interface, allows having at disposal a powerful environment for test, 
simulation or validation of diverse kinds of complex systems. 

VI.  DEVELOPING AN EXAMPLE 

Developing a simple example will show the detailed approach and 
will allow us to present the “COD language” in order to describe data 
and CODs inside objects. 

We use here the specification of a very simple industrial process 
control system, presented by Paul T. Ward in one of his books [10]. 
 

Requirements of the Control System: 
A thermal reaction consists in maintaining a given quantity of 

liquid reagent at a temperature H for a duration T. 
The filling of the reactor begins when the "Start Filling" 

command is given by the operator. 
When the level of reactant in the reactor reaches the value N, 

stop the filling (i.e. close the filling valve) and switch on the heating 
element. 

Trigger the timer as soon as the temperature of the reactant in 
the reactor reaches the H value. 

The timer is triggered by a specific command which is associated 
with the duration T of the reaction. 

Maintain the temperature of the reagent at the constant value H 
for the period of time T. 

As soon as the duration T has elapsed, turn off the heating 
element and evacuate the reaction product to an external storage 
tank. 

Safety requirement: 
Reactor filling can not start if the reagent level in the filling tank 

does not reach the minimum value M. 
In this case, the system must detect it as soon as possible and 

produce an alarm in response to the "Start Filling" command. 
 

The first step of the COD process is to determine the objects and 
their relationships. Links between ObjectA and ObjectB are essential 
to reveal if ObjectA knows the data of ObjectB. 

Here is the Structure of the Control System (the logical name of 
each OBJECT is given in parentheses): 

The System is made of a Reactor (REACTOR), two tanks (Filling 
tank FTANK and storage tank STANK), a Heating element 
(HEATER), valves (Filling valve of the Reactor FVALVE and 
Emptying valve EVALVE), a timer (TIMER) and alarm (ALARM).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 4 Object model of the Control System 
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In addition to these concrete objects, two abstract ones are 
required: parameters (PARAMETERS), that keeps the values of the 
reaction parameters (M, N, H and T), and a controller (CONTROL) 
which surveys the minimum level in the FTANK and sends the “Start 
Filling” command. Fig. 4 shows the complete UML [11] object 
model of this simple Control System. 

After defining objects and their relationships, the second step of 
the COD approach is to allocate data to each object, according to the 
specified requirements. 
 

TABLE IV 
OBJECTS AND DATA 

 

OBJECT Data Values 
ALARM status ON, OFF 
CONTROL Start Filling  
HEATER status 

temperature 
ON, OFF 

PARAMETERS M, N, H, T  
REACTOR contents 

temperature 
 

TANK contents  
TIMER status 

time 
SET, ON, OFF 

VALVE status open, close 
 

The following step is to complete this Table with CODs. 
Conditions on data for a given object are determined by its own data 
and by its relationships with its neighbors. For example, FTANK is a 
TANK (inheritance) and has a variable “contents”. FTANK knows 
FVALVE, so, the COD concerning “contents” can be a condition 
including the data of FVALVE, that we write like this in “COD 
language”:  
 

FTANK  
  contents = 100                
  FVALVE = open => contents-- 

 

Table V shows the complete data and CODs for all objects. Note 
that “ALARM = ON” is a simplified notation for “ALARM.status = 
ON” and “temp” is equivalent to “temperature”. 
 

TABLE V 
OBJECTS, DATA AND CODS 

 

OBJECT Data CODs 
ALARM status = OFF  
CONTROL Start Filling FTANK.contents < M => 

ALARM = ON 
FTANK.contents >= M => 
FVALVE = open 

HEATER status 
temperature 

status = ON => temp++ 
status = OFF => temp-- 

PARAMETERS M, N, H, T  
REACTOR contents 

temperature 
FVALVE = open => cont++ 
cont = N =>  
FVALVE = close AND 
HEATER = ON AND 
TIMER = SET 
 
TIMER = ON => temp = 
HEATER.temp 
temp < H => HEAT = ON 
temp >= H => HEAT = OFF 
TIMER = OFF AND 
HEATER = OFF => 
EVALVE = open 
EVALVE = open => cont-- 

TANK contents FVALVE = open => 
contents++ 
EVALVE = open => 
contents-- 

TIMER status 
time 

status = SET => time = T 
AND status = ON 
status = ON => time— 
time = 0 => TIMER = OFF 
AND HEATER = OFF 

VALVE status  
 

The last step is to write the COD language from this list (please 
see Table VI below).  

Please note that the objects are listed in the Table in alphabetical 
order, and COD language will be processed by the Inference Engine 
in the same order, for example. In fact, the order in which the Engine 
examines the objects has no importance. 

 However, the process control demands a rigorous order of 
execution: first, the Reactor must be filled. Then, the heating system 
must heat the reagent until the temperature H is reached. Then, the 
timer is set. And the reaction must last the duration T. At least, the 
product of the reaction has to be poured in the storage tank.  

One of the big interests of the COD approach is that the order of 
execution is rigorously kept by the CODs embedded in each object. 
The Inference Engine manages not only the dynamics of the process, 
but also the order of execution, because it cannot trigger a 
“conclusion” on data if the conditions on these data are not filled. 
 

TABLE VI 
CONTROL SYSTEM COMPLETE COD NOTATION 

 
//Control System COD Notation 
//--------------------------- 
ALARM 
 status = OFF 
//---------- 
CONTROL 
 FTANK.contents < M => ALARM = ON 
 FTANK.contents > M => FVALVE = open 
//--------------------------------- 
EVALVE 
 status = close 
//------------ 
FTANK 
 contents = 100 
 FVALVE = open => contents-- 
//------------------------- 
FVALVE 
 status = close 
//------------ 
HEATER 
 status = OFF 
 temp = 18 
 status = ON => temp++ 
 status = OFF => temp-- 
//-------------------- 
PARAMETERS 
 M = 50 
 N = 40 
 H = 150 
 T = 30 
//---------- 
REACTOR 
 contents = 0 
 temp = 18 
 FVALVE = open => contents++ 
 contents = N => FVALVE = close AND HEATER = ON AND  
TIMER = SET 
 TIMER = ON => temp = HEATER.temp 
 temp < H => HEATER = ON 
 temp >= H => HEATER = OFF 



 

 

 TIMER = OFF AND HEATER = OFF => EVALVE = open 
 EVALVE = open => contents-- 
//------------------------------------------ 
TIMER 
 status = OFF 
 time = 0 
 status = SET => time = T AND status = ON 
 status = ON => time— 
 time = 0 => TIMER = OFF AND HEATER = OFF 
//====================================== 

 
This “program without code” can be executed with the 

environment we develop and propose for free download at: 
www.programmingwithoutcode.org 

 
As you can see, the complete notation for this example contains 

less than 50 lines (including comments). This short content has to be 
compared with the complete Java program solving the same example 
we also develop as a comparison (the Java program can be 
downloaded on the same web site). The Java program has been 
generated from an object modeler and simulator, and contains 10 
classes (Alarm, Control, Heater, mainClass, System, Reactor, Tank, 
Parameters, Timer and Valve) for a total of 560 lines of code – the 
class Reactor being of course the fattest! 

We hope we have demonstrated through this example the power 
and simplicity of the COD approach, where data and their conditions 
are sufficient to model and make “run” complex systems.  

VII.  CONCLUSION 

We have presented in this paper an approach, a language and an 
environment that allow non-IT engineers to program the functioning 
of a system without writing complex lines of code, by using only the 
data required by the system and their conditions of use. We believe 
this approach, powerful and simple, provides a complete tool for 
system modeling and verification or simulation. 

The sequel of this work, which is currently in progress and will be 
presented in a next paper, consists in a complementary approach to 
analyze directly the text of a system specification and to extract from 
this text the description of objects with their data and CODs. By this 
way, we hope to be able to generate the “COD language” in order to 
feed directly the COD inference engine. We think this means will be 
an interesting help for system modeling and simulation. 
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